

# The alleviation of water deficit via biostimulant application in greenhouse grown lettuce plants

Christina Chaski, Paraskevi Bourouni, Vasilis Roupas, Spyridon A. Petropoulos\*

University of Thessaly, Department of Agriculture, Crop Production and Rural Environment, Fytokou Street, 38446, Volos, Greece \*Corresponding author: <a href="mailto:spetropoulos@uth.gr">spetropoulos@uth.gr</a>

# INTRODUCTION

- $\geq$ Lettuce is an important crop which is cultivated worldwide and is one the most widely consumed leafy vegetables highly appreciated for its taste and high nutritive value (Melajane et al., 2018).
- $\geq$ Plant biostimulants are a wide category of substances and microorganisms produced from organic and biological sources that may enhance crop quality and development, nutrient uptake, and/or resistance to biotic and abiotic stress (du Jardin, 2015).
- $\geq$ The aim of the present study was to evaluate the effect of deficit irrigation and biostimulant application on lettuce plants grown directly in soil under protected environment.

#### **METHOLOGY**

- Two cultivars were selected (one Romaine and one Batavia type)
- Young seedlings were transplanted directly in soil 7 weeks after sowing.
- Three irrigation treatments were applied based on field capacity (FC) of soil. ٠ namely Control (100% FC), I1 (70-75% FC) and I2 (46 % FC). The cumulative supply of water were for 1940 m<sup>3</sup>/ha for full irrigation, 1400 mm m<sup>3</sup>/ha for 66% FC and 1070 m<sup>3</sup>/ha for (50-55% FC).
- Six biostimulant treatments were applied, namely NB (no biostimulants added). ٠ AG109 (seaweed and plant extracts and microminerals), AGR110 (humic and fulvic acids), AGR111+112 (Si and Ca mobilization agent, Ca and Zn) AGR113 (Si) and AGR114 (mixture of 20 L amino acids), The biostimulants were provided by Agrology S.A., Greece.
- Chlorophyll content (SPAD index) and plant height were recorded at three sampling dates (one week after each biostimulant application), while yield and growth parameters (number of leaves, fresh and dry weight of leaves, leaf area (LA) and specific leaf area (SLA) were recorded at harvesting.
- The experimental layout was designed according to split-plot design, using the irrigation treatment as the main plot and the biostimulant treatments as the subplot for each of the tested cultivars.

## CONCLUSIONS

- ◆ It is necessary to conduct further research on both deficit irrigation and biostimulants application in order to provide useful data for better water use efficiency, as well as for the mitigation of water scarcity effects on crop yield.
- ✤ In our research, in most of the cases, the deleterious effects of water stress were alleviated by the use of biostimulants.
- ◆ The combinatory application of mild water deficit (I2) and biostimulants showed promising results as an innovative agronomic tool for sustainable water management, since significant increases in WUE values were recorded for both types of lettuce.

|                                                     |            |              |            |           | RESULTS AND DISCUSSION |            |         |                                                            |            |              |            |           |                       |            |         |
|-----------------------------------------------------|------------|--------------|------------|-----------|------------------------|------------|---------|------------------------------------------------------------|------------|--------------|------------|-----------|-----------------------|------------|---------|
| Table 1. Growth parameters of Batavia type lettuce. |            |              |            |           |                        |            |         | <b>Table 2.</b> Growth parameters of Romaine type lettuce. |            |              |            |           |                       |            |         |
|                                                     | Fresh      |              |            |           |                        |            |         | Fresh                                                      |            |              |            |           |                       |            |         |
|                                                     | Irrigation | Fresh weight | weight     |           |                        | Dry matter | SLA     |                                                            | Irrigation | Fresh weight | weight     |           |                       | Dry matter | SLA     |
| Biostimulant                                        | regime     | (g)          | leaves (g) | Leaves No | LA (cm²)               | (%)        | (m²/kg) | Biostimulant                                               | regime     | (g)          | leaves (g) | Leaves No | LA (cm <sup>2</sup> ) | (%)        | (m²/kg) |
| NB _                                                | Control    | 263.4abcA    | 237.7cB    | 16.7bAB   | 3421aA                 | 6.0aB      | 57.1bcA | NB                                                         | Control    | 297.5aA      | 271.3bA    | 27.6abA   | 3818aA                | 5.9aB      | 64.9aA  |
|                                                     | 11         | 273.7aA      | 298.4aA    | 17.3cA    | 4084abA                | 6.5aB      | 62.6bA  |                                                            | 11         | 229.6abB     | 241.1bB    | 24.6bA    | 3458aA                | 6.2abB     | 57.7bA  |
|                                                     | 12         | 106.1bB      | 103.1dC    | 14.2cB    | 1530aB                 | 9.0aA      | 17.8cB  |                                                            | 12         | 109.4bcC     | 93.9cC     | 23.5aA    | 1599bcB               | 9.4aA      | 17.5bB  |
| AGR109                                              | Control    | 235.8bcB     | 215.7dA    | 17.5bAB   | 2988aA                 | 6.2aB      | 47.9dA  | AGR109                                                     | Control    | 292.6aA      | 274.9bA    | 25.5bcA   | 3969aA                | 6.0aB      | 66.9aA  |
|                                                     | 11         | 298.5aA      | 217.0dA    | 18.8abcA  | 2916bA                 | 6.7aB      | 44.3dA  |                                                            | 11         | 291.3aA      | 271.8aA    | 29.3aA    | 3089aB                | 5.1bB      | 67.3aA  |
|                                                     | 12         | 139.1abC     | 133.7bB    | 16.5abcB  | 1965aB                 | 8.2aA      | 24.7aB  |                                                            | 12         | 132.5abB     | 133.4aB    | 26.0aA    | 2188aC                | 8.2bcA     | 26.9aB  |
| AGR110                                              | Control    | 225.3cB      | 214.6dB    | 17.3bB    | 3808aAB                | 6.5aB      | 60.4bB  | AGR110                                                     | Control    | 178.6bB      | 141.4dB    | 21.9bB    | 2195bcB               | 6.6aB      | 33.4cB  |
|                                                     | 11         | 303.3aA      | 291.2aA    | 19.7abA   | 4665aA                 | 6.3aB      | 74.1aA  |                                                            | 11         | 243.5abA     | 194.1dA    | 27.0abA   | 3015aA                | 7.2aB      | 41.9dA  |
|                                                     | 12         | 145.8abC     | 121.1cC    | 16.8abcB  | 1885aB                 | 9.4aA      | 21.0bC  |                                                            | 12         | 115.8bC      | 88.7cC     | 20.1bB    | 1543bcC               | 8.6abA     | 18.2bC  |
| AGR111+ -<br>AGR112 -                               | Control    | 281.2abA     | 234.6cA    | 19.2aA    | 3011aA                 | 5.8aB      | 52.0cdA | AGR111+ -<br>AGR112 -                                      | Control    | 160.2bA      | 127.2eB    | 27.3abcA  | 2039cB                | 7.1aC      | 28.6cB  |
|                                                     | 11         | 289.2aA      | 242.4cA    | 18.3bcA   | 3624abA                | 6.6aB      | 55.2cA  |                                                            | 11         | 199.4bA      | 199.3cdA   | 25.1abA   | 3045aA                | 6.0abB     | 50.8cA  |
|                                                     | 12         | 166.0aB      | 141.2aB    | 18.0abA   | 2037aB                 | 8.1aA      | 25.0aB  |                                                            | 12         | 72.7dB       | 54.9eC     | 18.9bB    | 1167cC                | 9.1abA     | 12.7cC  |
| AGR113                                              | Control    | 315.4aA      | 313.7aA    | 18.3abAB  | 4439aA                 | 6.0aB      | 76.1aA  | AGR113                                                     | Control    | 279.2aA      | 323.8aA    | 30.9aA    | 4354aA                | 6.2aB      | 73.1aA  |
|                                                     | 11         | 291.9aA      | 265.5bB    | 18.7bcA   | 4608aA                 | 6.2aB      | 76.9aA  |                                                            | 11         | 246.8abA     | 204.9cB    | 27.0abAB  | 3415aB                | 6.2abB     | 68.2aA  |
|                                                     | 12         | 136.8abB     | 131.2bC    | 16.2bcB   | 1921aB                 | 8.4aA      | 23.4abB |                                                            | 12         | 146.2aB      | 105.6bC    | 24.6aB    | 1855abC               | 7.6cA      | 24.6aB  |
| AGR114                                              | Control    | 259.9bcB     | 282.4bA    | 17.9abB   | 3821aA                 | 6.4aB      | 60.2bA  | AGR114                                                     | Control    | 221.2abA     | 175.1cB    | 25.3bcA   | 2951bA                | 7.0aB      | 42.1bA  |
|                                                     | 11         | 317.9aA      | 258.6bB    | 20.9aA    | 3268abA                | 6.2aB      | 52.0cA  |                                                            | 11         | 224.3abA     | 204.8cA    | 27.1abA   | 3136aA                | 6.7aB      | 48.4cA  |
|                                                     | 12         | 158.4aC      | 109.7dC    | 19.2aAB   | 1761aB                 | 9.4aA      | 21.8bB  |                                                            | 12         | 83.5cdB      | 65.2dC     | 20.4bB    | 1150cB                | 9.2abA     | 12.5cB  |

\*Different small Latin letters in the same column indicate differences between the means of different biostimulant products for the same irrigation according to Duncan Multiple Range test (p=0.05). Different capital Latin letters in the same column indicate differences between the means of different irrigation regimes for the same biostimulant according to Duncan Multiple Range test (p=0.05)

- $\checkmark$ Results revealed that the studied factors had a variable effects on leaf chlorophyll content and plant height during the course of the growth season for both cultivars.
- $\checkmark$  $\checkmark$ The highest yields in Batavia lettuce were recorded for AGR113 (315.4 g per plant) and AGR114 (317.9 g per plant) at 100% FC and 66% FC, respectively, while AGR111+112 resulted in the highest yield at 46% FC. According to the literature, the use of seaweed extracts and protein hydrolysates considerably increased yield values of baby leaf lettuce plants cultivated under greenhouse conditions (Di Mola et al., 2020). Rouphael et al. (2017), supported that protein hydrolysates may increase marketable yield of lettuce plants, especially under stress conditions which is in line with the results of our study recorded for AGR114 treatment.
- $\checkmark$ On the other hand, the highest yield in Romaine lettuce was recorded for the control treatment (NB; 297.5 g per plant) and AGR109 (292.6 g per plant) at 100% FC, while the same biostimulant (AGR109) resulted in the highest yield at 11 irrigation level. AGR113 treatment was the most productive at 12 irrigation level.
- $\checkmark$ A varied response to irrigation regime and biostimulant application was also observed for the number of leaves, LA and SLA values; although in most cases the application of biostimulants alleviated the negative effects of water stress.
- $\checkmark$ The highest water use efficiency (WUE) was recorded at 11 irrigation level for both lettuce types, especially in the case of AGR114 (WUE=36.3 kg/m<sup>3</sup>) for Batavia type and AGR109 (WUE=33.3 kg/m<sup>3</sup>) for Romaine type suggesting alleviating effects of biostimulants on crop yield under mild water stress that could improve the sustainable management of irrigation water.

#### REFERENCES

- Malejane. D.N.; Tinyani. P.; Soundy. P.; Sultanbawa. Y. & Sivakumar. D. Food Sci. Nutr. 2018 . 6: 334–341. doi: 10.1002/fsn3.559
- du Jardin. P. Plant Biostimulants: Definition. Concept. Main Categories and Regulation. Sci. Hortic. 2015. 196. 3–14. doi: 10.1016/j.scienta.2015.09.021
- Di Mola. I.; Cozzolino. E.; Ottaiano. L.; Giordano. M.; Rouphael. Y.; El-Nakhel. C.; Leone. V.; Mori. M. Aust. J. Crop Sci. 2020. 14. 1456–1464. doi: 10.21475/ajcs.20.14.09.p2511
- Rouphael, Y.; Cardarelli, M.; Bonini, P.; Colla, G. Front, Plant Sci. 2017. 8, 131. doi: 10.3389/fpls.2017.00131.





\*Different small Latin letters in the same column indicate differences between the means of different biostimulant products for the same irrigation according to Duncan Multiple Range test (p=0.05). Different capital Latin letters in the same column indicate differences between the means of different irrigation regimes for the same biostimulant according to Duncan Multiple Range test (p=0.05)

The mild water stress (11) resulted in similar or higher yields compared to full irrigation, especially in the case of AGR109. AGR110 and AGR114 in Batavia lettuce and AGR110 in Romaine lettuce.

## ACKNOWLEDGMENTS

This research has been co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH -CREATE - INNOVATE (project code:T2EDK-05281).